La suma de polinomios es una operación en la que partiendo de dos polinomios P(x) y Q(x), obtenemos un tercero R(x), que es la suma de los dos anteriores, R(x) tiene por coeficiente de cada monomio el de la suma de los coeficientes de los monomios de P(x) y Q(x) del mismo grado.
Para sumar expresiones polinomicas de dos o mas números se suman los términos, que son semejantes entre si, lo cual equivale a sumar unidades con unidades, decena con decenas, centenas con centenas, etc.
- Ejemplo:
Sustracción de polinomios
Para restar dos polinomios se suma al minuendo el opuesto del sutraendo, es decir, se cambia el signo a todos los términos del segundo polinomio (sustraendo) y se suman los resultados.Para restar el polinomio Q(x) del polinomio P(x) se debe sumar a P(x) el polinomio opuesto de Q(x).
P(x) - Q(x) = P(x) + [ - Q(x)].
P(x) - Q(x) = P(x) + [ - Q(x)].
- Ejemplo:
P(x) − Q(x) = (2x3 + 5x - 3) − (2x3 - 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x - 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x - 3
P(x) − Q(x) = 3x2 + x - 3
Multiplicación de polinomios
La multiplicación de polinomios es una operación algebraica que tiene por objeto hallar una cantidad llamada producto dadas dos cantidades llamadas multiplicando y multiplicador, de modo que el producto sea con respecto del multiplicando en signo y valor absoluto lo que el multiplicador es respecto a la unidad positiva. Tanto el multiplicando como el multiplicador reciben el nombre de factores del producto.
La multiplicación de polinomios cumple la propiedad distributiva. Es decir, que dados tres polinomios cualesquiera se cumplirá que . Esta ley acostumbra a enunciarse diciendo que los factores se pueden agrupar de cualquier manera.
Asimismo, el producto de polinomios también cumplía la propiedad conmutativa. Es decir, que dados los polinomios cualesquiera , se cumplirá que . Esta ley acostumbra a enunciarse diciendo que el orden de los factores no altera el producto.
Multiplicación de polinomios
Para multiplicar un polinomio por otro se multiplican todos los términos del multiplicando por cada uno de los términos del multiplicador, teniendo en cuenta la regla de los signos, y a continuación se efectúa la suma algebraica de todos los productos parciales así obtenidos.
- Ejemplo:
División de polinomios
La división algebraica es la operación que consiste en hallar uno de los factores de un producto, que recibe el nombre de cociente dado el otro factor, llamado divisor, y el producto de ambos factores llamado dividendo.
De la definición anterior se deduce que el dividendo coincide con el producto del divisor por el cociente. Así por ejemplo, si dividimos , se cumplirá que .
Para dividir dos polinomios se procede de la manera siguiente:
1) Se ordena el dividendo y el divisor con respecto a una misma letra.
2) Se divide el primer término del dividendo entre el primer término del divisor, obteniéndose así el primer término del cociente
3) Se multiplica el primer término del cociente por todo el divisor y el producto así obtenido se resta del dividendo, para lo cual se le cambia de signo y se escribe cada término de su semejante. En el caso de que algún término de este producto no tenga ningún término semejante en el dividendo, es escribe dicho término en el lugar que le corresponda de acuerdo con la ordenación del dividendo y del divisor.
4) Se divide el primer término del resto entre el primer término del divisor, obteniéndose de este modo el segundo término del cociente.
5) El segundo término del cociente se multiplica por todo el divisor y el producto así obtenido se resta del dividendo, cambiándole todos los signos.
6) Se divide el primer término del segundo resto entre el primer término del divisor y se repiten las operaciones anteriores hasta obtener cero como resto.
- Ejemplo
Dividir:
No hay comentarios:
Publicar un comentario